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Abstract

The Householder-Fox algorithm uses the Cholesky decomposition to calculate

an orthonormal basis for the range of a projection. In this paper it is

shown that the algorithm continues to give good results when it is applied

to an approximate projection in the presence of rounding error.
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ON THE HOUSEHOLDER-FOX ALGORITHM

FOR DEC(MPOSING A PROJECTION

Cleve B. Moler
G. W. Stewart

1. Introduction

A real orthogonal projection is a real matrix A satisfying the

following two conditions:

1. AT = A (symmetry),
2. A2 = A (idempotence).

Applied to a vector x such a matrix produces the orthogonal projection

Ax of x onto the column space of A (denoted by R(A)); that is,

x= Ax and x2 = (I-A)x are the unique vectors satisfying

1. x =x1 + x 2 ,

(1.2) 2. x E R(A),

3. x1  L X2.

The conditions (1.2) are easily seen to follow from (1.1).

In some applications one is given a projection A and wishes to find

an orthonormal basis for the subspace R(A). For example, if A is known

to be of low rank, say rank (A) = r, then A can be represented economically

in the form

A = Q'r

where the r columns of Q form an orthonormal basis for R(A). The
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savings in storage can be substantial if the order n of A is very much

greater than r; for A requires n2/2 locations for its storage while

Q requires only nr. Projections of low rank arise in the study of the

spectra of molecules with high degress of symetry (cf. the work of Fox

and Krone [3]).

One method for computing Q is to apply various orthogonalizing

techniques to the columns of A. For example, one might use Householder

transformations with column pivoting to compute a QR factorization of A

[5,7]. However, these techniques do not preserve the symmetry of A.

Moreover, there is considerable evidence that when A is sparse, ortho-

gonalization methods can lead to excessive fill-in [2].

A method which is symmetry preserving is to calculate the eigensystem

of A [6]. The eigenvalues of A must be either zero or unity, and the

eigenvectors corresponding to the eigenvalue unity form a basis for R(A).

However, the method suffers from fill-in problems, and does not directly

use the idempotency of A.

Householder and Fox [4] have observed that the Cholesdky factorization

of a projection gives the required basis for R(A) directly. The form

of the Cholesky decomposition used here is stated in the following theorem,

whose proof is usually a constructive technique for calculating it (see §3).

Theorem 1.1. Let A be a positive semi-definite matrix of order n

and rank r. Then there is a permutation matrix P and an n x r lower

trapezoidal matrix of rank r such that

pTAp = LL T
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The process by which the rows and columns of A are rearranged,

i.e., the manner in which P is chosen, is called pivoting. For the

present we shall assume that the pivoting has been done initially and

suppress mention of the matrix P. We shall return to the role of pivot-

ing in the final section of this paper.

The importance of the Cholesky decomposition for our purposes is

contained in the following corollary.

Corollary 1.2. Suppose, in addition to the hypotheses of Theorem

1.1, that A2 = A. Then

LTL = I.

Proof. From the relation A = LLT, it follows that

(1.3) LLTLLT = A = A = LLT.

Since the columns of L are independent, L has a pseudo-inverse

Lt = (LTL)- LT  satisfying LL = I. Then from (1.3)

LTL = Lt(LLTLLT)LtT = Lt(LLT) LtT = I.

The import of the corollary is that the columns of L are orthonormal.

They of course span R(A); hence the columns of L form the required basis.

However, in practice the algorithm must be used in the presence of errors

of various sorts, and it is the purpose of this paper to show that one can

still expect to obtain good results.
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2. Assessment of the Final Results

There are two sources of error in the use of the Householder-Fox

algorithm. First the matrix A may not be exactly idempotent (in most

applications the symmetry of A is forced by other considerations). We

summarize this state of affairs by writing

(2.1) A2 A + F,

where the symmetric matrix F is presumed small.

The second source of error is the rounding error made in the course

of the Cholesky reduction of A. The effects of rounding error will be

investigated in more detail in §3. For the present we will make the rea-

sonable assumption that the computed matrix L satisfies a stability

requirement of the form

(2.2) LLT - A + E,

where E is a small matrix of order rounding error (cf. Theorem 3.2 below).

Assuming (2.1) and (2.2), we shall in this section give answers to the

following two questions:

1. How near are the columns of L to orthonormality?

2. What is R(L)?

We shall answer these questions in terms of norms. Specifically we

shall use the Euclidean vector norm defined by

lXIi 4X
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and the spectral matrix norm defined by

11AIl = sup fhAxll.
11x11=1

When A is symmetric, its spectral norm is the maximum of the absolute

values of the eigenvalues of A. Also for any matrix x, IXi2J . liTXi.

We begin our development by locating the eigenvalues of the matrix A

which for the rest of this paper is assumed to be symmetric. The eigen-

values of a projection can be only zero and unity, and Theorem 2.1 general-

izes this fact by showing that an approximate projection in the sense of

(2.1) must have eigenvalues clustering about zero and unity.

Theorem 2.1. Let A satisfy (2.1). Then the eigenvalues of A

lie in one of the two intervals

and

(2.4) [1 + ,+ I ]

In particular

(2.5) JIAIJ - 1 + II1.

Proof. The eigenvalues of A2 - A are X2 - x, where X is an eigen-

value of A. Since A2 - A - F, the eigenvalues of A must satisfy
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X2 - X E [-IIFII,l]FlII,

which is equivalent to saying that X lies in one of the two intervals

(2.3) or (2.4). The largest eigenvalue of A cannot be larger than the

right hand end of the interval (2.4), which is bounded by 1 + IIFII. This

establishes (2.5). o

Asymptotically for small F the intervals (2.3) and (2.4) reduce

to [41FI1, I{FIl] and [1- IFII,I+IIFII].

If A is a projection, then so is I - A. If A is an approximate

projection in the sense of (2.1), then

2I-A)2 -- I - 2A + A2 = (I-A) + F.

Hence (I-A) is an approximate projection, and from Theorem 2.1 we have the

following bound:

III-All- f I + IFI{.

We are now in a position to answer the first of our questions.

Theorem 2.2. Let the matrix A satisfy (2.1) and let L satisfy

(2.2). Suppose that L is of full column rank and satisfies

t 2 1(2.6) llL II2  <

where

= IFil + IhEl(2*21IF11+EII).

Then
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(2.7) M t 1'12  < (1-2c) 1

-ad

(2.8) LTh - I! < c

Proof. Fr.a (2.1) and (2.2) it follows that

TT 2LLLL z(A+E) A+ E + F- E+ E+AE+ E.

Hence

2 Tt(2.9) LTL = I + Lt[F+E(A.-I)+AE+E ]L

It follows from (2.9) and (2.6) that

T1IIL L-Ill <

In particular no eigenvalue of LTL can be less than or equal to 1/2,

t 2from which it follows that JIL I1 < 2. Again from (2.9)

T
JIL L-III < 2&,

and from this the bound (2.7) follows. Finally applying (2.7) to (2.9)

gives (2.8). o

The condition (2.6) is a requirement that the columns of L be inde-

pendent. It is not very strong, and if it is satisfied it implies that the

columns of L are aliiost orthonormal in the sense of the inequality (2.8),

whose right hand side is essentially IIFiI + 21JEI1. Indeed the theorem may be

interpreted as saying that the columns of an LLT decomposition of A
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cannot be slightly independent without being completely so.

Our second question amounts to asking if, having obtained L, we

have obtained something useful. This of course will depend on what we

originally desired to compute; however, in most applications we are

seeking a basis for the column space of an exact projection which we

believe to be near A. Now any matrix satisfying (2.1) divides n-space

naturally into two complementary subspaces. They are the subspace A1

spanned by the eigenvectors associated with the eigenvalues clustered

about unity and the subspace A0 spanned by the eigenvectors associated

with the eigenvalues clustered about zero. These subspaces are orthogonal

complements, and because the eigenvalues associated with the two subspaces

are well separated, they are insensitive to small perturbations of A

(see [1] for further details). It follows that A1 must be a good

approximation to the column space of any projection near A.

We should like to show that R(L) is a good approximation to A1.

We shall do this indirectly by showing that the columns of L are almost

orthogonal to A0 . Since the columns of L are almost orthonormal R(L)

must be almost orthogonal to A0 and cannot help being a good approxima-

tion to A1.

Theorem 2.3. Under the hypotheses of Theorem 2.2, if for any vector

x with lxii = 1

ilAxl = 8,

then
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1T11 6+IE 

Proof. From (2.2) we have

LLTx = (A+E)x x +Ex.

Hence

LTx = L t(Ax+Ex)

and

I1L xli _ [[LtJJ(ilAxJi+JhEll lixi) = __o

It should be pointed out that, having obtained L, one can approximate the
projection onto A0 by I - LLT. If the dimension of A0 is very much less

than that of A1 , it will pay to decompose I - A to obtain an L spanning

A0 that has fewer columns. The projection for A1 can then be repre-

sented as I - LLT  (however, some care must be taken to insure the ortho-

gonality of the computed projections (LLT )x and (I-LL T)x).

3. The Effects of Rounding Error and the Role of Pivoting

The size of the matrix E that describes the effects of rounding

error on the computation has played an important role in the last section.

In this section we shall give reasons for expecting E to be quite small.

The analysis also makes clear the role of pivoting in computing the decom-

position.

We begin with a detailed description of the Cholesky algorithm in its
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"exterior product" form. The algorithm proceeds in stages. At the k-th

stage A has been decomposed in the form

A = LkLk + Bk,

where Lk  has k columns and Bk  has the form

k k

(3.1) Bk (0 B( k )

22

with B(k) of order n-k. Denoting by b(k) the k-th column of Bk and22 kk
by p(k) the (k,k)-element of Bk we form

b(k)b(k)T
Bk+l = Bk k k

Pkk

and

vk

It is easily verified that Lk+l is lower trapezoidal, that Bk+l is

zero except for its trailing principal minor of order n-k-l, and that

A = TLk+l + B Thus the decomposition is advanced one stage. The
Lil~~ k+l'

algorithm terminates when some Bk is negligible.

The algorithm cannot be carried out in the form described above if
(k) is not positive. However, in this event it may happen that there

1kk
is an integer tk 2 k such that e (k) is positive. Let Pk denote thekkZk
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permutation matrix obtained by interchanging rows k and tk of the

identity matrix and consider the decomposition

PMT )( )T BP T
kk k (PkLk) +~ PkB k

The matrix Pk is still lower trapezoidal, and the matrix PBkPk

still has the form (3.1). However, the (k,k)-th element of P BkP T is

(k) , and the decomposition of PkAP can proceed as usual. This processekek adtedcmoiino kP

of interchanging an acceptable element into the (k,k)-th position of Bk

is the pivoting process mentioned in §1.

It is still conceivable that no diagonal element of Bk is positive.

We shall show that this is not likely to happen unless Bk  is itself negli-

gible. We begin by proving a theorem about the diagonal elements of nearly

idempotent matrices.

Theorem 3.1. Let the symmetric matrix A of order n satisfy

2A A + F, where

2 2n

Then either flAl y r or there is a diagonal element a.. of A that satisfies

(3.2) a.. _ - y >

11 n 2n

Proof. As was observed in Theorem 2.1, the eigenvalues of A lie in

the nonoverlapping intervals [-y,y] and [l-y,l+Y]. By perturbing the

eigenvalues in the first interval to zero and those in the second interval

.........................jl-..
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to unity we obtain a matrix A + G whose eigenvalues are either zero or

unity; i.e., A + G is a projection. Moreover, JIG1[ : y. Now if J1AJI > Y,

then one of the eigenvalues of A must lie in the interval [l-y,l+y],

and A + G must have unity for an eigenvalue. The trace of A + G is the

sum of the eigenvalues of A + G; hence

i ( a i i Y i i
) >.

Thus there is a diagonal element ai + yii of A + G satisfying

1
(33 ii + Yii n"

Since yii f< IGh, (3.3) implies (Z.2). c

It must be noted that the term 1/n in (3.2) is an extreme lower bound

and can be replaced by p/n, where p is the number of eigenvalues of A

in the interval [I-y,l+y].

Theorem 3.1 shows that there is always a reasonable pivot element to

start the reduction. To show that it can be completed, we shall show that

the matrices Bk are also nearly idempotent, after which Theorem 3.1

applies to give us the required pivot element. In addition to the usual

assumption that A2 = A + F, we shall take account of rounding error by

supposing that the computed Lk and Bk satisfy

Tk

LkL+ Bk = A + Ek.

For notational convenience we shall drop the subscripts k during the

analysis.
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Let B be partitioned as in (3.1), and let A, E, and L be parti-

tioned conformally:

(All A 12
A = = (A,A2),

A21  A22

E11  E12

E  =  = (E1,E2),
E 21 E22

L2L L~ )
Assume the L1  is nonsingular and set

X = IL 11.
1*

Now

LLT = A1 + E1 .

Hence

T T T T T

= (A11+E11) + Fl,- Ell + T + TIA + Tj

+ AlEA 1E1A 1 1A1ElF-1

or

(34) T -1 T + T -I(3.4 L LL = I + L1 (Fl 1 -E1 1+AlE1+E1A1+E1E1)L1 I + G
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where

UGII ),2IIFII+ hEll (3+2hIFhI+ lI) I

It also follows from (3.4) that

JIlL LII 1 + uIGh

and

IIL1I1 + JuGh1.

We next obtain a bound for L -AL. We have

ALL T = A E A+F+E

=(A 1+E1) + F1I + (A-I)E 1 ,

Hence

AL L + [F I+(A-I)E1]L-T

L +H,

where

IiHII fs XUIF1I+ lIEU (l+IlFfI) I.

Finally since B =A + E - LL T
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B2 . A 2 -ALL T -LLTA + LLTLL + AE + EA + E - ELL - LLE

= (A+E) - (L+H)LT - L(LT+H) + L(I+G)LT

+ F + (A-I)E + EA + E - ELL T - LLTE

= B - ILT LTH + LGLT+ F + (A-I)E + EA + E2

ELL- LLTE

B + K,

where

IIKII -5 IiHII(2.+ GII) + IGII(1+11GII)

+ IIFII + hEIj(4+jIFh+iIEhI+2hIGj).

If we ignore terms of the second order in the bound for 11K we

obtain the asymptotic bound

IIKII < X2(IFIH+3IEII) + 2X(IFII+hIE!!) + (fiFil+ 411EIJ),

in which the first term will generally dominate. Since L LT = Al1 +

the number X2 is an estimate of 1Ai11. This explains the role of pivot-

ing in the algorithm. Not only is pivoting necessary to insure that one

stage of the algorithm can be carried out, but it is also necessary to

keep small diagonal elements from appearing in L1. For if this unhappy

circumstance occurs, then X must be large and we cannot guarantee the
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successful conclusion of the algorithm. Note, however, that if E and

F are small we can hope to tolerate rather small diagonal elements, which

gives us considerable freedom in the choice of pivot elements.

We have not yet given a quantitative assessment of the effects of

rounding error on our algorithm. We cite a well known theorem [7,8].

Theorem 3.2. Let the algorithm described above be carried out in

t-digit, binary floating-point arithmetic. Let

Pk =max { )ij 1..n= "'x i, * 1... n;-1,... ,k-l}.

Then

E k[ f f (n)@k 2-t.

The function f(n) depends on the details of the arithmetic used;

but it is certainly less than O(n2) with a modest order constant. The

critical factor is the number Pk' which measures the growth of the elements

of the matrices Bk. Since Ok _' 1 + [JKkjI, the above analysis applies to

show that, provided we have maintained a reasonable degree of nonsingu-

larity in the matrices L(k), rounding error should have a negligible

effect on the algorithm.

To sumarize, this is a remarkably stable algorithm. Although we

cannot guarantee that the L(k) will have small inverses, we think that

it is extremely unlikely that anything untoward will happen if a reason-

able pivoting strategy is adopted. The cautious user can monitor the
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Pk as the B k are computed, after which Theorem 3.2 and Theorem 2.2

will enable him to assess his results. A particularly attractive feature

of the algorithm is the latitude in pivoting strategies that the bound

on ilKII suggests are available to the user. For example, the user might

compromise the size of his pivots to preserve sparsity in very large

problems and hope to get away with it. Experiments by Fox and Krohn

[3] in which the pivot order is fixed initially tend to confirm this

view.
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